304am永利集团(官方vip认证)网站-GREEN NO.1

年轮分析系统——WinDENDRO
日期:2017-03-27 09:36:22

主要功能

WinDENDRO 年轮图象分析系统是一款多平台图象分析系统,与扫描仪匹配,专门对盘状的木材截面或柱状的生长锥样本进行树木年轮的测量。

大型木材样本可在不同部位多次分别成像;特殊的树芯定位器用以放置柱状样本;两种自动测定年轮的方法分别适用于不同的树木类型;人工辅助的图像识别校正和遗漏像素添加功能;可利用木材薄片的 X 光胶片扫描进行木材密度测定( 密度版)。此外,WinDENDRO 可自动设置裂缝与年轮角度的切线,以保证测量的精准性;另外,附加 XLSTEM 可进行植物的标准生长分析,如茎干平均半径、直径以及总体截面积;树木高度、体积、树龄等。对于所分析的年轮图像可同时显示如下参数:年轮宽度、早材/夏材宽度、年轮最大/最小密度/平均密度、早材/夏材平均密度(高级密度版)等。

 

主要功能.jpg


测量参数

年轮基本测量参数年轮计数,年轮环宽度,早材/晚材宽度,年轮环角度(弧度)等。

年轮密度测量参数:年轮平均密度,早材平均密度 ,晚材平均密度,年轮环晚材最大密度 ,年轮环早材最大密度 。

树木圆盘测量参数:圆盘面积,周长,平均直径,形状因子,孔隙面积,年轮技术等。


  

  

应用领域

广泛应用于植物学、植物生理学、林学、树木学、森林生态学等领域。  


主要技术参数

截图00.png

WinDENDRO Itrax 软件

包括密度版软件所有功能,另增加化学物质分析功能。注:必须配套使用 Cox 系统公司的 itrax 扫描仪。

 

选购指南:

系统由以下两部分组成:

图像扑捉系统:经过厂家调试的标准年轮样本扫描设备,生长锥定位器等。

·   STD4800:扫描面积 22×30 cm,投影面积 20×25 cm,分辨率 4800 DPI,可分辨最小粒子 0.005 mm

·   LA2400:超大扫描面积 31×44 cm,投影面积 31×42 cm,分辨率 2400 DPI,可分辨最小粒子 0.011 mm

年轮分析软件:基本版 /标准版 /Itrax版密度版 WinDENDRO 分析软件。

 

 

产地:加拿大 Regent



参考文献

原始数据来源:Google Scholar

Wrońska-Wałach D, Sobucki M, Buchwał A, Gorczyca E, Korpak J, et al. (2016) Quantitative analysis of ring growth in spruce roots and its application towards a more precise dating. Dendrochronologia 38: 61-71.

Wood LJ, Smith DJ, Hartley ID (2016) Predicting softwood quality attributes from climate data in interior British Columbia, Canada. Forest Ecology and Management 361: 81-89.

Tumajer J, Treml V (2016) Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185-194.

Stretch V, Gedalof Ze, Cockburn J, Pisaric MFJ (2016) Sensitivity of reconstructed fire histories to detection criteria in mixed-severity landscapes. Forest Ecology and Management 379: 61-69.

Slack AW, Zeibig-Kichas NE, Kane JM, Varner JM (2016) Contingent resistance in longleaf pine (Pinus palustris) growth and defense 10 years following smoldering fires. Forest Ecology and Management 364: 130-138.

Simon P, Lena M (2016) Radial growth response of horse chestnut (Aesculus hippocastanum L.) trees to climate in Ljubljana, Slovenia. Urban Forestry & Urban Greening 18: 110-116.

Scharnweber T, Hevia A, Buras A, van der Maaten E, Wilmking M (2016) Common trends in elements? Within- and between-tree variations of wood-chemistry measured by X-ray fluorescence — A dendrochemical study. Science of The Total Environment 566–567: 1245-1253.

Renard SM, Gauthier S, Fenton NJ, Lafleur B, Bergeron Y (2016) Prescribed burning after clearcut limits paludification in black spruce boreal forest. Forest Ecology and Management 359: 147-155.

Qian S, Yang Y, Tang CQ, Momohara A, Yi S, et al. (2016) Effective conservation measures are needed for wild Cathaya argyrophylla populations in China: Insights from the population structure and regeneration characteristics. Forest Ecology and Management 361: 358-367.

Pritzkow C, Wazny T, Heußner KU, Słowiński M, Bieber A, et al. (2016) Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 449: 520-530.

Parobeková Z, Sedmáková D, Kucbel S, Pittner J, Jaloviar P, et al. (2016) Influence of disturbances and climate on high-mountain Norway spruce forests in the Low Tatra Mts., Slovakia. Forest Ecology and Management 380: 128-138.

Papadopoulos A (2016) Tree-ring patterns and climate response of Mediterranean fir populations in Central Greece. Dendrochronologia 40: 17-25.

Omari K, MacLean DA, Lavigne MB, Kershaw Jr JA, Adams GW (2016) Effect of local stand structure on leaf area, growth, and growth efficiency following thinning of white spruce. Forest Ecology and Management 368: 55-62.

Marchand W, DesRochers A (2016) Temporal variability of aging error and its potential effects on black spruce site productivity estimations. Forest Ecology and Management 369: 47-58.

Liang H, Lyu L, Wahab M (2016) A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia 37: 1-8.

Lee EH, Beedlow PA, Waschmann RS, Tingey DT, Wickham C, et al. (2016) Douglas-fir displays a range of growth responses to temperature, water, and Swiss needle cast in western Oregon, USA. Agricultural and Forest Meteorology 221: 176-188.

Larson ER, Rawling Iii JE (2016) Developing new sources of proxy climate data from historical structures in the Lake Michigan-Huron Basin. Journal of Great Lakes Research 42: 328-335.

Holeksa J, Zielonka T, Żywiec M, Fleischer P (2016) Identifying the disturbance history over a large area of larch–spruce mountain forest in Central Europe. Forest Ecology and Management 361: 318-327.

Haines HA, Olley JM, Kemp J, English NB (2016) Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones. Science of The Total Environment 572: 412-421.

Giroud G, Bégin J, Defo M, Ung C-H (2016) Ecogeographic variation in black spruce wood properties across Quebec’s boreal forest. Forest Ecology and Management 378: 131-143.

Dyderski MK, Czapiewska N, Zajdler M, Tyborski J, Jagodziński AM (2016) Functional diversity, succession, and human-mediated disturbances in raised bog vegetation. Science of The Total Environment 562: 648-657.

Ashiq MW, Anand M (2016) Spatial and temporal variability in dendroclimatic growth response of red pine (Pinus resinosa Ait.) to climate in northern Ontario, Canada. Forest Ecology and Management 372: 109-119.

Amos-Binks LJ, MacLean DA (2016) The influence of natural disturbances on developmental patterns in Acadian mixedwood forests from 1946 to 2008. Dendrochronologia 37: 9-16.

Woolley TJ, Harmon ME, O’Connell KB (2015) Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape. Forest Ecology and Management 335: 60-70.

van der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change 127: 58-66.

Toïgo M, Vallet P, Tuilleras V, Lebourgeois F, Rozenberg P, et al. (2015) Species mixture increases the effect of drought on tree ring density, but not on ring width, in Quercus petraea–Pinus sylvestris stands. Forest Ecology and Management 345: 73-82.

Sillett SC, Van Pelt R, Kramer RD, Carroll AL, Koch GW (2015) Biomass and growth potential of Eucalyptus regnans up to 100 m tall. Forest Ecology and Management 348: 78-91.

Sauchyn D, Vanstone J, St. Jacques J-M, Sauchyn R (2015) Dendrohydrology in Canada’s western interior and applications to water resource management. Journal of Hydrology 529, Part 2: 548-558.

Sanz-Ros AV, Müller MM, San Martín R, Diez JJ (2015) Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain. Fungal Biology 119: 870-883.

Paredes-Villanueva K, López L, Brookhouse M, Cerrillo RMN (2015) Rainfall and temperature variability in Bolivia derived from the tree-ring width of Amburana cearensis (Fr. Allem.) A.C. Smith. Dendrochronologia 35: 80-86.

Ouimet R, Moore J-D (2015) Effects of fertilization and liming on tree growth, vitality and nutrient status in boreal balsam fir stands. Forest Ecology and Management 345: 39-49.

Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management 339: 22-33.

Mayor JR, Mack MC, Schuur EAG (2015) Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biology and Biochemistry 88: 247-256.

Martinez-Meier A, Fernández ME, Dalla-Salda G, Gyenge J, Licata J, et al. (2015) Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. Forest Ecology and Management 346: 31-40.

Marcoux HM, Daniels LD, Gergel SE, Da Silva E, Gedalof Ze, et al. (2015) Differentiating mixed- and high-severity fire regimes in mixed-conifer forests of the Canadian Cordillera. Forest Ecology and Management 341: 45-58.

 

收 藏